SKL-100™ is a liquid substitute for Potassium Chloride (KCl) for use in clear brine WO and completion fluids.

BENEFITS & USE
- Prevents clay swelling and migration
- Non-flammable
- Used with water, brines, acids and drilling fluids
- Compatible with most gels, cross linkers, and breakers
- Will not adversely effect fluid pH
- Superior performance at lower costs than KCl
- Minimizes inventory, storage and transportation problems
- Minimizes waste disposal problems
- Can be mixed on-the-fly
- No inorganic chlorides
- Slightly cationic
- Exceeds KCl performance as per CST and reverse permeability testing
- Use in preflush fluids and most completion fluids

PACKAGING
- 55 Gal Drums
- 275 Gal Totes
- Bulk

ADDITIONAL INFORMATION
- Potassium chloride (KCL) is generally used at a two (2) percent concentration although it is common to use much higher concentrations depending on the clay content and the clay characteristics
 - A two (2) percent solution requires approximately 700 pounds of KCL per 100 barrels of water (about 14 fifty (50) pound bags or 13 twenty-five (25) kilogram bags).
 - In order to obtain the equivalent performance of KCL, two (2) gallons of **SKL-100™** are used per 100 barrels of water or per every 700 pounds of KCL. One drum of **SKL-100™** will replace about 20,000 pounds of KCL or 400 fifty pound bags.
 - The amount of KCL used is also dependent (or should be) on the purity of the KCL. This factor is all too often overlooked when mixing KCL to the required concentration.
 - Large cost savings can be generated when using **SKL-100™** in replacing KCL in terms of freight savings, warehousing, inventory, blending manpower costs, on-the-fly savings when local water sources are available, maintenance costs savings on equipment such as pumps due to damage caused by the various granular materials in the KCL.

TREATMENT
1/2 gal **SKL-100™** per 1,000 gal water or 2 gal **SKL-100™** per 100 barrels water.

METHODS OF APPLICATION
SKL-100™ can be mixed with water or other process and treatment fluids in a tank truck, blend or storage tank or on the fly.

Form & Appearance.......................... Dark Amber Liquid
Specific Gravity..............................1.124 @ 77°F
Density @ 77° F...............................9.34 lb/gal
Freeze Point.................................15°F
Boiling Point.................................212°F
Solubility in Water.........................Complete
Acid Absorption............................Almost Complete
pH..3.5 – 5.5
ADDITIONAL INFORMATION (CONTINUED)

- As far as savings obtained when using SKL–100™ in the EXPORT MARKET, the same savings seen in paragraph #5 will be realized but a greater savings due to ocean transport costs will be obtained. Approximately 2 drums of SKL–100™ will replace a 40-foot container of KCL. These savings sometimes amount to more than the cost of the product.

- In AIR DRILLING (water misting/air mixtures) consumption of surfactants necessary for the required foaming characteristics and stability can be substantially reduced due to the inherent foaming properties built into the SKL–100™.

- With a specific gravity close to that of water, heavier brine solutions (using fresh or salt waters) can be formulated using heavier salts without causing precipitation of the salts to include KCL while getting the necessary clay stabilization.

- In general, based on costs in the U.S. and Canada, using SKL–100™ should result in a savings of approximately 63% up and above the previously described savings in paragraphs #5 and #6.

SKL-100™ MIXING CHART

<table>
<thead>
<tr>
<th></th>
<th>2% KCl</th>
<th>4% KCl</th>
<th>6% KCl</th>
<th>8% KCl</th>
<th>24% KCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 BBLs</td>
<td>20 GAL</td>
<td>40 GAL</td>
<td>60 GAL</td>
<td>80 GAL</td>
<td>240 GAL</td>
</tr>
<tr>
<td>750 BBLs</td>
<td>15 GAL</td>
<td>30 GAL</td>
<td>45 GAL</td>
<td>60 GAL</td>
<td>180 GAL</td>
</tr>
<tr>
<td>500 BBLs</td>
<td>10 GAL</td>
<td>20 GAL</td>
<td>30 GAL</td>
<td>40 GAL</td>
<td>120 GAL</td>
</tr>
<tr>
<td>250 BBLs</td>
<td>5.0 GAL</td>
<td>10 GAL</td>
<td>15 GAL</td>
<td>20 GAL</td>
<td>60 GAL</td>
</tr>
<tr>
<td>200 BBLs</td>
<td>4.0 GAL</td>
<td>8 GAL</td>
<td>12 GAL</td>
<td>16 GAL</td>
<td>48 GAL</td>
</tr>
<tr>
<td>100 BBLs</td>
<td>2 GAL</td>
<td>4 GAL</td>
<td>6 GAL</td>
<td>8 GAL</td>
<td>24 GAL</td>
</tr>
<tr>
<td>75 BBLs</td>
<td>1.5 GAL</td>
<td>3 GAL</td>
<td>4.5 GAL</td>
<td>6 GAL</td>
<td>18 GAL</td>
</tr>
<tr>
<td>50 BBLs</td>
<td>1 GAL</td>
<td>2 GAL</td>
<td>3 GAL</td>
<td>4 GAL</td>
<td>12 GAL</td>
</tr>
<tr>
<td>40 BBLs</td>
<td>0.8 GAL</td>
<td>1.5 GAL</td>
<td>2.5 GAL</td>
<td>3.2 GAL</td>
<td>9.6 GAL</td>
</tr>
<tr>
<td>30 BBLs</td>
<td>0.6 GAL</td>
<td>1.2 GAL</td>
<td>1.8 GAL</td>
<td>2.4 GAL</td>
<td>7 GAL</td>
</tr>
<tr>
<td>25 BBLs</td>
<td>0.5 GAL</td>
<td>1 GAL</td>
<td>1.5 GAL</td>
<td>2 GAL</td>
<td>6 GAL</td>
</tr>
</tbody>
</table>

Mixing Rate = 1/2 Gallon per 1,000 Gallons Water. Gallon per 100 Barrels Water

The information contained on this page is correct to the best of our knowledge, but is intended only as a source of information. The recommendations or suggestions herein are made without guarantee or representation as to results, and we suggest that you evaluate the recommendation contained on this page in your own laboratory prior to use. Our responsibility for claims arising from breach of warranty, negligence or otherwise is limited to the purchase price of the material.